[1] Wang, X., Wang, C., Fan, X., Sun, L., Sang, C., Wang, X., Jiang, P., Fang, Y., Bai, E., 2024. Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils: Insights from an isotope tracing model. Global Change Biology 30, e17156.
[2] Sun, L., Qu, L., Moorhead, D.L., Cui, Y., Wanek, W., Li, S., Sang, C., Wang, C., 2024. Interpreting the differences in microbial carbon and nitrogen use efficiencies estimated by 18O labeling and ecoenzyme stoichiometry. Geoderma 444, 116856.
[3] Qu, L., Wang, C., Manzoni, S., Dacal, M., Maestre, F.T., Bai, E., 2024. Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. The ISME Journal 18, wrae025.
[4] Lyu, M., Chen, S., Zhang, Q., Yang, Z., Xie, J., Wang, C., Wang, X., Liu, X., Xiong, D., Xu, C., Lin, W., Chen, G., Chen, Y., Yang, Y., 2024. Rapid positive response of young trees growth to warming reverses nitrogen loss from subtropical soil. Functional Ecology 38, 1222–1235.
[5] Chen, L., Zhou, G., Feng, B., Wang, C., Luo, Y., Li, F., Shen, C., Ma, D., Zhang, C., Zhang, J., 2024. Saline–alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon. Science Bulletin, In press
[6] Wang C* ,Wang X,Zhang Y,Morrissey E,Liu Y,Sun LF,Qu LR,Sang CP,Zhang H,Li GC*,Zhang LL,Fang YT. Integrating microbial community properties,biomass and necromass to predict cropland soil organic carbon. 2023. ISME Communications,3,86. Doi: 10.1038/s43705-023-00300-1.
[7] Sun LF*,Moorhead DL,Cui YX*,Wanek W,Li SL,Wang C. Exogenous nitrogen input skews estimates of microbial nitrogen use efficiency by ecoenzymatic stoichiometry. 2023. Ecological Process,12,46. Doi: 10.1186/s13717-023-00457-6.
[8] Walkup J,Dang C,Mau RL,Hayer M,Schwartz E,Stone BW,Hofmockel KS,Koch BJ,Purcell AM,Pett-Ridge J,Wang C,Hungate BA,Morrissey EM*. 2023. The predictive power of phylogeny on growth rates in soil bacterial communities. ISME Communications,DOI: 10.1038/s43705-023-00281-1.
[9] He P,Ling N*,L XT,Zhang HY,Wang C,Wang RZ,Wei CZ,Yao J,Wang XB*,Han XG,Nan ZB. 2023. Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology,DOI: 10.1016/j.apsoil.2023.104881.
[10] Yu HM,Duan YH,Mulder J,D#ouml;rsch P,Zhu WX,Ri X,Huang K,Zheng ZT,Kang RH,Wang C,Quan Z,Zhu FF,Liu DW,Peng SS,Han SJ,Zhang YJ*,Fang YT*. 2023. Universal temperature sensitivity of denitrification nitrogen losses in forest soils. Nature Climate Change,DOI: 10.1038/s41558-023-01708-2.
[11] Cao YW,Liu XM,Wang C,Bai E,Wu NP*. 2022. Rare earth element geochemistry in soils along arid and semiarid grasslands in northern China. Ecological Processes,11,1-14. DOI: 10.1186/s13717-022-00375-z.
[12] Wang ZT,Yang JY,Wang C,Bai E*. 2022. Oxygen gas derived oxygen does not affect the accuracy of 18O-labelled water approach for microbial carbon use efficiency. Soil Biology and Biochemistry,168,108469.
[13] Wang C,Morrissey EM*,Mau RL,Hayer M,Pi#ntilde;eiro JMack MC,Marks JC,Bell SL,Miller SN,Schwartz E,Dijkstra P,Koch BJ,Stone BW,Purcell AM,Blazewicz SJ,Hofmockel KS,Pett-Ridge J,Hungate BA,2021. The temperature sensitivity of soil: microbial biodiversity,growth,and carbon mineralization. The ISME Journal,15,2738-2747.
[14] Wang C #,Qu,LR#,Yang,LM,Morrissey,E,Miao RH,Liu ZP,Wang QK,Fang YT,Bai E*. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology,27,2039-2048.
[15] Li J,Sang CP,Yang JY,Qu LR,Xia ZW,Sun H,Jiang P,Wang XG,He HB, Wang C.*,2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry,156,108207.
[16] Sun LF,Wang C*, Yu HM,Liu DW,Houlton BZ,Wang SF,Zeng XF*,Bai E,Fang YT,Jia YF. 2021. Biotic and abiotic controls on dinitrogen production in coastal sediments. Global Biogeochemical Cycles,35,e2021GB007069.
[17] Sang CP,Xia ZW*,Sun LF,Sun H,Jiang P,Wang C *,Bai E,2021. Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest. Ecological Processes,10: 66.
[18] Dai W,Peng B,Liu J, Wang C, Wang X,Jiang P,Bai E,2021. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry,154,371-383.
[19] Wang X,Dai W,Filley TR,Wang C,Bai E,2021. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry,161,108381.
[20] Fan X,Gao D,Zhao C,Wang C,Qu Y,Zhang J,Bai E*,2021. Improved model simulation of soil carbon cycling by representing microbial-derived organic carbon pool. The ISME Journal,15,2248-2263.
[21] Wang X,Wang C *,Cotrufo MF,Sun L,Jiang P,Liu Z,Bai E*,2020. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Global Change Biology,26,5277-5289.
[22] Wang C,Wang X,Pei GT,Xia ZW,Peng B,Sun LF,Wang J,Gao DC,Chen SD,Liu DW,Dai WW,Jiang P,Fang YT,Liang C,Wu NP,Bai E*,2020. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry,141,107687.
[23] Qu LR,Wang C *,Bai E*,2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology and Biochemistry,145,107802.
[24] Xia ZW,Yang JY,Sang CP,Wang X,Sun LF,Jiang P,Wang C*,Bai E,2020. Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms,8,1828.
[25] Chang Q,Qu G,Xu W,Wang C,Cheng W,Bai E*,2020. Light availability controls rhizosphere priming effect of temperate forest trees. Soil Biology and Biochemistry,148,107895.
[26] Pei GT,Liu J,Peng B,Wang C,Jiang P,Bai E*,2020. Non-linear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences,125,e2019JG005462.
[27] Houlton BZ*,Almaraz M,Aneja V,Austin AT,Bai E,Cassman KG,Compton JE,Davidson EA,Erisman JW,Galloway JN,Gu BJ,Yao G,Martinelli,LA,Scow K,Schlesinger WH,Tomich TP,Wang C,Zhang X,2019. A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future,7,865-872.
[28] Hou JF,Dijkstra FA,Zhang XW,Wang C,L XT,Wang P,Han XG,and Cheng WX*,2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China,Peer J,7,e6712.
[29] Sun LF,Sang CP,Wang C,Fan ZZ,Peng B,Jiang P,and Xia ZW*,2019. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature,Journal of Soils and Sediments,19,3499-3511.
[30] Sun LF,Xia ZW,Sang CP,Wang X,Peng B,Wang C,Zhang J,M ller C,Bai E,2019. Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture. Biology and Fertility of Soils,55,629-641.
[31]Pei GT,Liu J,Peng B,Gao DC,Wang C,Dai WW,Jiang P,and Bai E*,2019. Nitrogen,lignin,C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem,Forest Ecology and Management,440,61-69.
[32] Peng B,Sun JF,Liu J,Dai WW,Sun LF,Pei GT,Gao DC,Wang C,Jiang P,Bai E*,2019. N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of The Total Environment,648,350-357.
[33] Feng J,Wei K,Chen Z,L XT,Tian JH,Wang C,and Chen LJ*,2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry,Global Biogeochemical Cycles,33,559-569.
[34] Wang C,Houlton BZ,Liu DW,Hou JF,Cheng WX,Bai E*,2018a. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences,15,987-995.
[35] Wang C#,Liu DW#,Bai E*,2018b. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry,120,126-133.
[36] Almaraz M*,#,Bai E #,Wang C,Trousdell J,Conley S,Faloona I,Houlton BZ,2018a. Agriculture is a major source of NOx pollution in California. Science Advances,4,eaao3477.
[37] Almaraz M*,#,Bai E#,Wang C,Trousdell J,Conley S,Faloona I,Houlton BZ,2018b. Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NOx emissions. Science Advances,4,eaau7373.
[38] Feng J,Turner BL,Wei K,Tian JH,Chen Z,L XT,Wang C,Chen LJ*,2018. Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands. Geoderma,327,36-44.
[39] Wang C,Houlton BZ,Dai,WW,Bai E*,2017a. Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Science of The Total Environment,574,1044-1053.
[40] Wang C,Wei HW,Liu DW,Luo WT,Hou JF,Cheng WX,Han XG,Bai E*,2017b. Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil,417,43-52.
[41] Liu DW,Zhu WX,Wang XB,Pan YP,Wang C,Xi D,Bai E,Wang Y,Han XG,Fang YT*,2017. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200?km transect. Biogeosciences,14,989-1001.
[42] Luo WT,Li MH,Sardans J,Lu XT,Wang C,Penuelas J,Wang ZW,Han XG,Jiang Y*,2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution,7,6927-6934.
[43] Liu J,Wang C,Peng B,Xia ZW,Jiang P,Bai E*,2017. Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components. Plant and Soil,412,453-464.
[44] Wang C,Liu DW,Luo WT,Fang YT,Wang XB,L XT,Jiang Y,Han XG,Bai E*,2016. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology,9,576-585.
[45] Feng J,Turner BL,L XT,Chen Z,Wei K,Tian JH,Wang C, Luo WT,Chen LJ*,2016. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemical Cycles,30,1264-1275.
[46] Luo WT,Dijkstra FA,Bai E,Feng J,L XT, Wang C,Wu HH,Li MH,Han XG*,Jiang Y*,2016. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry,127,141-153.
[47] Wang XB,Van Nostrand JD,Deng Y,L XT,Wang C,Zhou JZ,Han XG*,2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS microbiology ecology,91,fiv133.
[48] L MK,Xie JS *, Wang C,Guo JF,Wang M,Liu X,Chen Y,Chen GS,Yang YS,2015. Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biology and Fertility of Soils,51,857-867.
[49] Luo WT,Elser JJ,L XT,Wang ZW,Bai E,Yan C,Wang C, Li MH,Zimmermann NE,Han XG,Xu ZW,Li H,Wu Y,Jiang Y*,2015b. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles,29,1298-1308.
[50] Wang C#, Wang XB#,Liu D,Wu HH,L XT,Fang YT,Cheng WX,Luo WT,Jiang P,Shi J,Yin H,Zhou JZ,Han XG *,Bai E*,2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications,5,4799.
[51] 候建峰,吕晓涛,王超,王朋. 2014. 中国北方草地呼吸的空间变异及成因. 应用生态学报,25(10):2840-2846.
[52] 王超,黄蓉,杨智杰,刘强,陈光水等. 2012. 万木林保护区柑橘和锥栗土壤呼吸的比较研究. 应用生态学报,32(6):1469-1475.
[53] 王超,黄群斌,杨智杰,黄蓉. 陈光水等. 2011. 杉木人工林不同深度土壤CO2通量初步研究. 生态学报,31(19):5711-5719.
[54] 王超,杨智杰,陈光水,范跃新,刘强等. 2011. 万木林保护区毛竹林土壤呼吸特征及影响因素. 应用生态学报,22(5):1212-1218.
[55] 王超,杨智杰,黄蓉,刘强,杨玉盛等. 2011. 中亚热带人工经济林土壤有机碳含量及分布. 亚热带资源与环境学报,6(2):36-41.
[56] 黄蓉,王超,杨智杰,陈光水等. 2011. 万木林青年和老龄常绿阔叶林乔木层碳贮量分配特征. 亚热带资源与环境学报,6(2):29-35.
[57] 刘强,王超,杨智杰,陈光水,黄锦学等. 2011. 福建建瓯万木林柑橘与锥栗凋落物数量、组成及动态. 亚热带资源与环境学报,6(4):29-34.
承担项目:
1、2024-2026:国家自然基金委优秀青年项目,主持;
2、2024-2027: 国家自然基金委面上项目:“从微生物生命周期角度分析增温影响土壤有机碳周转的机制”,主持;
3、2023-2025:中国科学院青年创新促进会优秀会员,主持;
4、2017-2019: 国家基金委青年基金:“森林土壤微生物残体氮素周转及其对土壤有机氮贡献研究”,主持;
5、2018-2022: 中科院青年促进会项目,主持;
6、2019-2023:国家自然基金委重点项目:“杉木人工林SOM形成与转化的生物学控制机制”,骨干;
7、 2019-2023:中科院基础前沿创新项目课题:“地上地下生物-环境互馈对东北森林生态系统稳定性的影响机理”,主持;
8、 2019-2021:东北师范大学长白山地理过程与生态重点实验室开放课题:“增温对长白山阔叶红松林土壤微生物残体分解的影响”,主持;
9、2016-2020:中科院前沿学科重点研究项目课题:“同位素示踪微生物氮在森林土壤中的去向”,主持;
10、 2016-2021:国家重点研发计划子课题:“森林和草地生态系统碳汇提升途径”,参与;
11、 2018-2021: 国家自然基金委面上项目:“不同形态大气沉降氮在典型草甸草原生态系统中的分配及存留机制”,参与;
12、2015-2017:国家基金委青年基金:“地上凋落物数量变化对长白山阔叶红松林土壤氮循环的影响及其机理”,参与。